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1. INTRODUCTION 

Desbarats [1990] used a particle-tracking scheme to inves- 
tigate the physics of three-dimensional solute transport in 
aquifers composed of two porous media of different hydrau- 
lic conductivities. The spatially heterogeneous fluid velocity 
was assumed to be the only mechanism of solute movement; 
local or pore scale dispersion and molecular diffusion were 
assumed to be negligible. The particle-tracking scheme used 
by Desbarats consisted of routing particles from node to 
node in a finite difference grid. In this scheme, the direction 
of an individual particle is randomly selected and the prob- 
ability associated with the particle movement in a given 
direction is proportional to the fluid flux in that direction. 
The same method was used by Moreno et al. [1988] to 
investigate advective transport in a variable-aperture planar 
fracture. 

In this comment we demonstrate that the node-to-node 

particle-routing scheme used by Desbarats is a poor model of 
the physics of advective solute movement in a continuum. 
This scheme introduces artificial dispersion by routing par- 
ticles to nodal locations on a finite difference grid, regardless 
of the location of fluid streamlines. Hence, the node-to-node 
muting scheme induces particle movement across stream- 
lines, which is symptomatic of solute dispersion. In contrast, 
other particle-tracking schemes that treat a heterogeneous 
flow regime as a continuum and deterministically move 
particles based on an interpolated velocity can simulate 
advection-dominated solute movement without introducing 
artificial or numerical dispersion [e.g., Reddell and Sunada, 
1970; Konikow and Bredehoeft, 1978; Prickett et al., 1981]. 

Our comment focuses only on the errors introduced in 
employing the node-to-node routing scheme and its impact 
on interpreting advection-dominated solute movement. We 
do not comment on the conclusions reached by Desbarats 
with regard to the physics of the problem that he considered. 
Use of a model that accurately treats advection-dominated 
solute movement may or may not influence the conclusions; 
however, we believe that there are more appropriate and 
available models that can be used to investigate advection- 
dominated solute movement. 

In the remaining sections of this comment we evaluate the 
artificial dispersion introduced by the node-to-node routing 
scheme for the case of uniform flow, and compare numerical 
simulations of particle movement using the node-to-node 
routing scheme to results of a linear velocity interpolation 
method for the case of a two-dimensional aquifer with binary 
hydraulic conductivity. 

In a companion comment [Goode and Shapiro, this issue], 
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we show that the node-to-node routing scheme introduces 
similar errors for the physical system considered by Moreno 
et al. [ 1988], a variable-aperture planar fracture. The results 
presented in this comment for the case of uniform flow apply 
directly to the methods used by Moreno et al. [1988]. 

2. NODE-TO-NODE ROUTING IN UNIFORM FLOW 

In a uniform flow field, with no local dispersion, an initial 
cloud of particles will move at the rate of the fluid velocity, 
with no additional spreading of the particles. The node-to- 
node routing scheme used by Desbarats (and by Moreno et 
al. [1988]) correctly predicts particle movement if the uni- 
form velocity is oriented along one of the axes of the finite 
difference grid, because particle movement transverse to the 
direction of flow is given a probability of zero under such 
conditions. However, if the uniform velocity is not oriented 
with the grid, the node-to-node routing scheme artificially 
introduces longitudinal and transverse spreading. For flow in 
heterogeneous media, the local flow direction is variable, 
even if the mean flow direction is oriented with the grid. 
Hence, the node-to-node routing scheme will always intro- 
duce artificial longitudinal and transverse spreading when 
used to simulate transport in heterogeneous media. 

The error that the node-to-node routing scheme introduces 
in a uniform flow field can be examined analytically. The 
following analysis can also be extended to three dimensions; 
however, for simplicity a two-dimensional finite difference 
grid is considered. We assume the fluid velocity to be 
oriented at an angle 0 -< 0 < 90, where 0 is measured 
counterclockwise from the x axis and the finite difference 

grid is oriented in the x and y directions and has spatial 
discretization Ax = &y = fi, (Figure 1). The components of 
the fluid velocity in the x and y directions are Vx = V cos 0 
and Vy = V sin 0, respectively, where V is the magnitude of 
fluid velocity. Analytically, the time for a particle to travel a 
distance L in the direction of the fluid velocity is L/V. 

In the node-to-node routing scheme used by Desbarats, 
the residence time of a particle in any block for the case of 
uniform flow is [after Moreno et al., 1988, equation (11)] 

tu = • = (1) 
1 V(cos 0 + sin 0) 

d 

where tu is the uniform residence time for all blocks, and Vj 
are the components of velocity from a node of interest to 
adjacent node j, which are computed from the finite differ- 
ence interblock fluxes. The effective velocity of the particle 
is the distance traveled divided by the residence time. Thus, 
the effective velocities of particles in the node-to-node 
routing scheme, VxR and VyR, are 
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Fig. 1. Schematic of numerical grid showing spatial discretization, 
node-to-node connections, and orientation of velocity vector. 

VxR = VyR =- = V(cos 0 + sin 0) (2) 
tu 

The node-to-node routing scheme randomly chooses either 
the x or y direction for each particle, but weights the 
probabilities of moving in a given direction by the fractional 
flux in either direction. For the case here, the probability of 
a particle moving in the positive x direction is 

Vx cos 0 
Px = • = (3) 

Vx+Vy cos0+sin0 

and the probability of a particle moving in the positive y 
direction is 

sin 0 
Py = = 1 - Px (4) 

cos 0 + sin 0 

The probabilities of particles moving in the negative x or y 
directions are zero because Vx and Vy are always positive 
for 0 -< 0 -< 90. The expected value of the distance a particle 
will travel in the x direction is 

E[Lx] = T(PxVxR)= VT cos 0 (5) 

and the expected value of the travel distance in the y 
direction is 

E[Ly] = VT sin 0 (6) 

where T is elapsed time and E[ ] is the expected value 
operator. Equations (5) and (6) show that the node-to-node 
routing scheme preserves the mean particle position for a 
uniform flow field at any angle to the grid. However, because 
of the probabilistic method of choosing the direction of 
particle movement between nodes, an artificial spreading is 
introduced. 

The longitudinal and transverse dispersion introduced by 
the node-to-node routing scheme in a uniform flow field can 
be analytically evaluated by considering the release of a 
large number of particles from a single node in the grid. 
Because the particle movement from node to node is as- 

sumed to be independent of previous particle movements, 
the motion of an individual particle can be regarded as a 
series of Bernoulli trials having one of two outcomes: (1) 
movement along the x direction of the grid or (2) movement 
along the y direction of the grid. The probability of move. 
ment in the x and y directions is given by P• and P y• 

respectively, and the binomial distribution defines the prob- 
ability of the number of movements, for example, in the x 
direction out of the total number of particle movements. 
Consequently, the distance a given particle moves in the 
direction parallel to the uniform velocity is given by 

Lx =fA cos 0 + (N-f)A sin 0 (7) 

where L x is the longitudinal distance of particle movement 
and f is a binomially distributed random variable represent- 
ing the number of times the particle has moved in the x 
direction out of a possible N movements. The first term on 
the right-hand side of (7) represents the longitudinal distance 
associated with particle movements in the x direction of the 
grid, while the second term represents the longitudinal 
distance associated with particle movements in the y direc- 
tion of the grid. A similar expression for the location of the 
particle in the direction transverse to the uniform fluid 
velocity can also be written, 

Lr =fix sin 0 - (N - f)A cos 0 (8) 

where L• is the transverse distance of particle movement. 
Using (7) and (8), the variance of the longitudinal and 

transverse particle positions induced by the node-to-node 
routing scheme can be evaluated as 

z = - = - (9) 

where crx 2 and cr• 2 are the variances of particle location in the 
longitudinal and transverse directions, respectively. Effec- 
tive longitudinal and transverse dispersivities (ax and aT, 
respectively) associated with the node-to-node routing 
scheme can be calculated using properties of the binomial 
distribution, resulting in 

1 dcr• 2 Asin20(1--sin20) 
2V dt 4(c0s 0+sin O) 

! der2, zXsin20(1+sin20) 
2V dt 4(c0s 0 + sin0) 

(!0) 

Figure 2 shows the magnitude of the longitudinal and trans- 
verse dispersivities (relative to the grid spacing) that are 
artificially introduced by the node-to-node routing scheme in 
a uniform flow field as a function of the orientation of the 

fluid velocity. If the fluid velocity is oriented along one of the 
axes of the finite difference grid, the node-to-node routing 
scheme does not artificially introduce longitudinal or trans- 
verse dispersion into the simulations of particle movement. 
If, however, the fluid velocity is oriented at an angle to the 
finite difference grid, the node-to-node routing scheme arti- 
ficially introduces both a longitudinal and transverse spread- 
ing to the particle motion, where the transverse dispersivity 
exceeds the longitudinal dispersivity. When flow is at 45 ø to 
the grid, the artificial transverse spreading introduced is at 
its maximum while the longitudinal component is zero. Both 
components are proportional to the grid spacing. 
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Fig. 2. Artificial dispersivities introduced by node-to-node rout- 
ing in uniform flow as a function of the angle between the direction 
of flow and the numerical grid. 

3. NODE-TO-NODE ROUTING IN A BINARY 
POROUS MEDIUM 

Desbarats considered three-dimensional flow of an incom- 

pressible fluid in heterogeneous porous media and applied a 
standard block-centered seven-point finite difference method 
with harmonic mean interblock hydraulic conductivity (K). 
Desbarats considered the hydraulic conductivity of each 
finite difference block to be a random indicator function 

taking on only two values corresponding to shale and sand- 
stone. The indicator random function allowed the specifica- 
tion of the proportion of shale to sandstone, and of the 
spatial correlation structure in K. Also, the contrast in the 
conductivities of the shale and sandstone was varied from no 

contrast (homogeneous media) to the sandstone K being 
10,000 times the shale value. 

Desbarats used the node-to-node routing scheme to simu- 
late transport through the binary heterogeneous medium. 
Desbarats erroneously stated that conventional particle 
tracking will not work for his case, but presents no analyses 
supporting this claim. Desbarats stated (p. 155), 

Models based on the covection-dispersion equation [Konikow 
and Bredehoeft, 1978] are adversely affected by numerical 
dispersion due to the convective solute flux term and are 
unusable here. Particle tracking models [Ahlstrom et al., 1977; 
Prickett et al., 1981] are also judged unsuitable in the present 
context .... These interpolated velocities are smoothed con- 
siderably and no longer reflect the true variability of the discrete 
velocity field .... Finally, with high conductivity contrasts, a 
very small time step must be used for particle advancement. 
This slows computation... 

Several misrepresentations in these statements are discussed 
in turn. 

Desbarats is probably aware that the cause of numerical 
dispersion lies in the numerical solution of the advection- 
dispersion equation by finite difference and finite element 
methods, not in the equation itself. The model of Konikow 
and Bredehoeft [1978] uses the method of characteristics 
(MOC) instead of finite differences or finite elements to 
simulate advection specifically because the MOC does not 
introduce numerical dispersion when the dispersion coeffi- 
cients are zero. Garabedian and Konikow [1983] developed 
a version of the model of Konikow and Bredehoeft [1978] to 
track sharp fronts with no dispersion, numerical or physical. 

Geede [1990] demonstrates the ability of particle-tracking 
models using velocity interpolation to handle highly variable 
velocities, and Pollock [1988] presents a three-dimensional 
interpolation scheme that has been applied without difficulty 
to systems with large K contrasts. These investigators show 
that the linear interpolation of velocities (or fluxes) satisfies 
the fluid continuity equation within each block of the model. 
That is, the smooth nature of the velocity variability within 
each block is a result of the physics of the problem. Geede 
[1987, 1990] specifically addresses the discontinuities in V 
that occur where K changes abruptly; linear interpolation of 
velocity (and other possible schemes) preserves this physical 
effect. The node-to-node routing scheme actually yields a 
smoother breakthrough curve than linear velocity interpola- 
tion [Geede and Shapiro, this issue], due to the former's 
artificial dispersion. No artificial dispersion is introduced in 
velocity interpolation schemes because the particles are 
advected through the continuous domain without mixing at 
nodes, and particles do not cross streamlines. 

Finally, for the case of linear interpolation of V, the path 
line and travel time within each block can be evaluated 

analytically [Pollock, 1988; Geede, 1990] and are insensitive 
to time step size. Only one step is required for each block, as 
in Desbarats' scheme. Here, we use linear interpolation with 
analytical evaluation of pathlines within each block. This 
model worked without diffculty for cases of K contrasts of 
up to 10,000 to 1. As for computational effort, our limited 
experience indicates that interpolation is of the same order 
of computational burden as the node-to-node routing scheme 
and both are certainly within the capabilities of modern 
computers. 

Numerous investigators have applied particle-tracking 
schemes with velocity interpolation to study solute transport 
in heterogeneous media and resultant macrodispersion [e.g., 
Smith and Schwartz, 1980; Davis, 1986; EI-Kadi, 1988]. 
Linear and other velocity interpolation methods treat the 
flow system as a continuum and move particles throughout 
the domain by computing the velocity at any point in the 
domain. Each separate particle follows a unique determinis- 
tic path corresponding to a streamline in steady flow. These 
methods have been used extensively to simulate advection in 
groundwater flow systems [e.g., Reddell and Sunada, 1970; 
Konikow and Bredehoeft, 1978; Prickett et al., 1981]. The 
linear velocity interpolation method yields exact solutions 
for advection-only transport in the uniform flow case dis- 
cussed above, regardless of orientation of the grid. 

Schwartz [1977] used particle tracking and velocity inter- 
polation to analyze transport in binary porous media for K 
contrasts of up to 83 to 1. In fact, DesbarGes' conclusions 
that a Fickian model of macroscopic dispersion is not 
applicable, and that macroscopic dispersion is controlled by 
the magnitude of K contrasts, by the relative proportions of 
the two media, and by the spatial structure of the aquifer, 
have all previously been presented by Schwartz [1977]. 

To illustrate the differences between the node-to-node 

routing scheme used by DesbarGes and linear velocity inter- 
polation as used by numerous other investigators, we 
present results from an example simulation in a two- 
dimensional binary heterogeneous aquifer with sandstone 
and shale conductivities of 10 and 0.001 m/d, a contrast of 
10,000 to 1. Using the turning bands method [Mantoglou and 
Wilson, 1982; Zimmerman and Wilson, 1989], we generate a 
normally distributed (N[0, 1 ]) random field for a grid of 51 (x) 
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by 31 (y) blocks having Ax = Ay = 1 m. The random variable 
is assumed to have a negative exponential and isotropic 
covariance function 

(11) 

where R is the covariance, r is the separation distance, and 
the correlation length, A = 5 m. To convert this to an 
indicator function, we vary the indicator cutoff (Desbarats' 
y, p. 154) until the desired proportion of sandstone and shale 
is achieved. For the simulations presented here, the aquifer 
is approximately 70% sandstone. Note that we have not 
attempted to match the covariance structure of Desbarats' 
indicator K function, in part because the actual correlation 
function of the underlying normal random variable (his py(h), 
p. 154) used by Desbarats was not presented. However, this 
K field is qualitatively similar to the correlated isotropic 
fields used by Desbarats and exhibits spatial correlation 
significantly larger than the grid blocks. 

Advective transport through a single realization of the 
heterogeneous porous medium is performed for 1000 parti- 
cles using both an implementation of Desbarats' node-to- 
node routing scheme and linear velocity interpolation. No- 
flow boundary conditions are imposed on the top (y -- 31 m) 
and bottom (y = 0 m) borders of the grid. Fixed head 
boundaries are applied at nodes along the left (x = 0.5 m) and 
right (x = 50.5 m) borders to yield a mean velocity in the 
positive x direction. Particles are injected on the inflow face 
in proportion to the flux in the x direction at each block. For 
the node-to-node routing scheme, all of the particles in a 
given block originate at the node. In the case of velocity 
interpolation, the particles in a given block are initially 
evenly spaced in the vertical (y) direction within the block. 
Figure 3a shows the locations of all particles using the 
node-to-node routing scheme after 0.5 days. The number of 
particles in each subregion is represented by the number of 
petals on the "flower." A single point indicates only one 
particle in the subregion. Figure 3b shows the locations of all 
particles at 0.5 days using linear velocity interpolation. 
Although there are many similarities between the results of 
the two methods, such as lower velocity in the lower left part 
of the figures and higher density of particles in high-flow 
channels, the artificial dispersion introduced using the node- 
to-node routing scheme is readily apparent. Simulation with 
additional particles would increase the resolution of the front 
using velocity interpolation. 

Differences in particle breakthrough predicted by the two 
approaches for the case of a binary porous medium are 
similar to the differences presented in a companion comment 
[Goode and Shapiro, this issue] for the case of a variable- 
aperture planar fracture. The residence times of most parti- 
cles are overestimated and the breakthrough curve is 
smoother when the node-to-node routing scheme is used. 
There is variability in the residence times of the slowest 
particles using the routing scheme due to its probabilistic 
approach. For most node-to-node routing simulations 
(changing only the seed for the random number generator) 
on this flow field, the slowest particle had a shorter residence 
time than that using linear velocity interpolation. 
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Fig. 3. Positions of 1000 particles in a binary porous medium at 
0.5 days using (a) node-to-node routing and (b) velocity interpola. 
tion. In Figure 3a the number of particles in each subregion is 
indicated by the number of petals on the "flower." A single point 
indicates only one particle in the subregion. 

4. CONCLUSIONS 

Many investigators have used numerical simulations of 
solute transport in subsurface environments to analyze the 
effects of spatial variability in formation properties. This 
approach to the investigation of the physics of solute move- 
ment is appealing because the investigator has complete 
control and perfect knowledge of the formation properties. 
However, these numerical experiments substitute for reality 
only to the extent that the underlying models of flow and 
transport capture the physics of these processes in real 
systems. 

Desbarats investigated solute movement in heterogeneous 
subsurface environments in which advection was considered 

to be the only process affecting transport. However, his 
numerical model introduced artificial dispersion into the 
simulations. The errors introduced using the node-to-node 
routing scheme were analytically calculated for a uniform 
flow field. In addition, we illustrated these errors in a binary 
heterogeneous porous media by considering numerical ex- 
periments similar to those presented by Desbarats. In this 
comment, we did not analyze the physical interpretations of 
the numerical model result. However, other particle- 
tracking methods that do not introduce artificial dispersion 
are available and are of the same order of computational 
burden as the node-to-node routing scheme. We hope that 
this discussion will contribute to the use of appropriate 
methods for simulation of advection transport in heteroge- 
neous flow regimes. 
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